Conformations of tissue plasminogen activator (tPA) orchestrate neuronal survival by a crosstalk between EGFR and NMDAR.

Le 02 Nov 2021

Auteur : Bertrand T, Lesept F, Chevilley A, Lenoir S, Aimable M, Briens A, Hommet Y, Bardou I, Parcq J, Vivien D

Année : 2015

Journal : Cell Death Dis 2041-4889

PubMed Id : 26469972

Tissue-type plasminogen activator (tPA) is a pleiotropic serine protease of the central nervous system (CNS) with reported neurotrophic and neurotoxic functions. Produced and released under its single chain form (sc), the sc-tPA can be cleaved by plasmin or kallikrein in a two chain form, tc-tPA. Although both sc-tPA and tc-tPA display a similar fibrinolytic activity, we postulated here that these two conformations of tPA (sc-tPA and tc-tPA) could differentially control the effects of tPA on neuronal survival. Using primary cultures of mouse cortical neurons, our present study reveals that sc-tPA is the only one capable to promote N-methyl-D-aspartate receptor (NMDAR)-induced calcium influx and subsequent excitotoxicity. In contrast, both sc-tPA and tc-tPA are capable to activate epidermal growth factor receptors (EGFRs), a mechanism mediating the antiapoptotic effects of tPA. Interestingly, we revealed a tPA dependent crosstalk between EGFR and NMDAR in which a tPA-dependent activation of EGFRs leads to downregulation of NMDAR signaling and to subsequent neurotrophic effects.