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Key Points

• The gold standard
thrombolytic agent tPA
worsens inflammation
and hemorrhagic
transformation risk in a
hyperglycemic mouse
stroke model.

• Glunomab
immunotherapy
counters side effects
of tPA via NMDAR
signaling in
hyperglycemic mice
after stroke.
The pharmacological intervention for ischemic stroke hinges on intravenous

administration of the recombinant tissue-type plasminogen activator (rtPA, Alteplase/

Actilyse) either as a standalone treatment or in conjunction with thrombectomy.

However, despite its clinical significance, broader use of rtPA is constrained because of

the risk of hemorrhagic transformations (HTs). Furthermore, the presence of diabetes or

chronic hyperglycemia is associated with an elevated risk of HT subsequent to

thrombolysis. This detrimental impact of tPA on the neurovascular unit in patients with

hyperglycemia has been ascribed to its capacity to induce endothelial N-methyl-D-

aspartate receptor (NMDAR) signaling, contributing to compromised blood-brain barrier

integrity and neuroinflammatory processes. In a mouse model of thromboembolic stroke

with chronic hyperglycemia, we assessed the effectiveness of rtPA and N-acetylcysteine

(NAC) as thrombolytic agents. We also tested the effect of blocking tPA/NMDAR signaling

using a monoclonal antibody, Glunomab. Magnetic resonance imaging, speckle contrast

imaging, flow cytometry, and behavioral tasks were used to evaluate stroke outcomes. In

hyperglycemic animals, treatment with rtPA resulted in lower recanalization rates and

increased HTs. Conversely, NAC treatment reduced lesion sizes while mitigating HTs.

After a single administration, either in standalone or combined with rtPA-induced

thrombolysis, Glunomab reduced brain lesion volumes, HTs, and neuroinflammation

after stroke, translating into improved neurological outcomes. Additionally, we

demonstrated the therapeutic efficacy of Glunomab in combination with NAC or as a

standalone strategy in chronic hyperglycemic animals. Counteracting tPA-dependent

endothelial NMDAR signaling limits ischemic damages induced by both endogenous and

exogenous tPA, including HTs and inflammatory processes after ischemic stroke in

hyperglycemic animals.
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Introduction

In ischemic stroke, restoration of vessel patency is crucial to mitigate
tissue damage and patient deficits.1-3 Pharmacological strategies
aimed at promoting rapid reperfusion rely on the use of recombinant
tissue-type plasminogen activator (rtPA) or tenecteplase, either
alone or in combination with thrombectomy.4-6 Despite their clinical
effectiveness, the broader application and advancement of throm-
bolytic therapies remain subjects of debate because of the risk of
hemorrhagic transformations (HTs). Moreover, the rate of arterial
recanalization after rtPA administration remains relatively low
(<30%), particularly in cases in which occlusive thrombi are rich in
platelets.7-10 Consequently, there exists a pressing clinical need to
mitigate the side effects associated with thrombolytics, enhancing
their efficacy for a larger proportion of patients.

In addition to its role in vascular fibrinolysis,11 tPA has been
recognized for its impact on neuronal survival12-14 and its ability to
modulate the integrity of the blood-brain barrier (BBB) and
inflammation.15-18 These functions of tPA have been associated
with the modulation of N-methyl-D-aspartate receptor (NMDAR)
signaling, both in neurons and endothelial cells.12,13,19-21

It is accepted that the development of an inflammatory response
after an ischemic stroke is associated with more severe outcomes,
including higher National Institutes of Health Stroke Scale scores
and worse Glasgow Coma Scale scores. This inflammatory
response also leads to an increased mortality.22-24 Recent data
have highlighted the potential impact of these mechanisms in
hemorrhagic strokes.25-27 Interestingly, there is growing evidence
indicating that both endogenous and exogenous tPA play a role in
the inflammatory processes after a stroke.28-30 For example, tPA-
NMDAR mechanisms involving endothelial cells may contribute to
the infiltration of immune cells into the brain parenchyma.28,31,32

It is recognized that diabetes is a significant vascular comorbidity
with clinical implications that leads to lower rates of vessel recana-
lization and risk of HTs. These adverse effects are attributed to
factors such as hyperglycemia, oxidative stress, and inflammation.
Diabetes is also associated with diminished functional and cognitive
outcomes and an elevated risk of mortality.33 Preclinical studies in
hyperglycemic or diabetic animal models have consistently demon-
strated adverse effects, including larger infarct sizes in rodents,34,35

reduced cerebral blood flow, increased edema, higher incidences of
HTs,36 and more severe cognitive deficits.37 Moreover, patients with
diabetes receiving thrombolytic treatment have an increased sus-
ceptibility to HTs.38,39 The risk of stroke is also significantly elevated,
with diabetes increasing this risk by 1.5-fold.40

Therefore, here, we examined the potential adverse effects of rtPA
in a mouse model of thromboembolic stroke with concomitant
chronic hyperglycemia. Our investigation encompassed the
assessment of outcomes such as HTs and proinflammatory pro-
cesses, with a focus on whether these effects could be mitigated
by inhibiting tPA-dependent endothelial NMDAR signaling. Addi-
tionally, we explored the feasibility of substituting rtPA with the
safer thrombolytic agent, N-acetylcysteine (NAC).

Materials and methods

Also see supplemental Materials.
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Animals

All procedures adhered to the ethical guidelines of the European
Directive (2010/63/EU) and were approved by the ethical com-
mittee of the Ministry of Higher Education and Research. The
experiments followed the Animal Research: Reporting In Vivo
Experiments guidelines and were approved under the reference
number 21620.

We conducted experiments using male Swiss mice (6 weeks of
age, Janvier Laboratories) (Le Genest-Sainte-Isle, France). Animals
were maintained in standard husbandry conditions (temperature:
22 ± 2◦C; hygrometry: 50% ± 20%) under light–dark cycle (light
from 8:00 to 20:00) with ad libitum access to water and food
(except on the days of blood glucose levels assessments for which
animals fasted for 5 hours). Enrichment materials were provided
with 5 animals per cage. Randomization of mice was performed.
Experiments and analyses were carried out blinded. The determi-
nation of the number of animals per group was based on previous
experiments and a meta-analysis involving >700 animals.4,41

Thromboembolic stroke

To induce proximal occlusion of the middle cerebral artery (MCA),
we used the in situ thromboembolic stroke model consisting in the
injection of thrombin directly into the MCA.5 Under aseptic con-
ditions, animals were anesthetized with 5% isoflurane and main-
tained with 2% isoflurane in a 70%:30% mixture of NO2:O2.
Buprenorphine was injected subcutaneously (0.5 mg/kg) and local
anesthesia was performed by instillation of lidocaine in both ears.
Rectal temperature was maintained at 37 ± 0.5◦C throughout the
surgical procedure. Mice were placed in a stereotaxic frame; the
MCA was exposed through a small craniotomy and the dura
excised. A pulled glass micropipette was introduced into the MCA
and 1 μL (1 UI/μL) of purified murine α-thrombin (Stago, Belgium)
was injected to induce occlusion (MCAo). The pipette was
removed 10 minutes after.

Drugs and treatments

Because an aim of the this study was to investigate the potential
impact of hyperglycemia, we decided to use a mouse model of type
1 diabetes induced by repeated injections of low doses of strep-
tozotocin (STZ, see supplemental Materials and methods).42-44

After stroke, a catheter was inserted into the tail vein to allow
intravenous administration of 200 μL of treatments or their vehicle
20 minutes or 4 hours after the injection of thrombin. rtPA (Actilyse,
Boehringer Ingelheim) at 10 mg/kg was infused at 10% bolus and
90% perfusion for 40 minutes. For NAC injection, mice received
400 mg/kg of NAC (Sigma-Aldrich) dissolved in phosphate-
buffered saline. This dosage was determined through a dose
escalation study, consistent with our prior research.41 In addition,
300 μg of Glunomab were administered as an intravenous bolus
before infusion of rtPA or its vehicle. Administration of NAC was
performed as an intravenous bolus.

Results

tPA loses its beneficial effects and increases the risk

of HTs in hyperglycemic mice

We have previously developed a thromboembolic ischemic stroke
model in mice,5 associated, here, with chronic hyperglycemia as a
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diabetes-like comorbidity. STZ-induced hyperglycemia was
confirmed in an independent cohort, with blood glucose levels
reaching 347.5 ± 135.2 mg/dL 16 days after treatment (compared
with 157.3 ± 22.9 mg/dL for the control groups, P < .05;
supplemental Figure 1B). This increase in glucose levels was fol-
lowed by a loss of weight in STZ-treated animals (33.2 ± 0.9 g in
the STZ group, 38.8 ± 1.5 g in vehicle group, 19 days after the end
of STZ treatment, P < .0001; supplemental Figure 1B). Twenty-
seven days after STZ treatments, there was no longer a statisti-
cal difference between the 2 groups in terms of body weight
(35.7 ± 1.8 g in the STZ group; 38.0 ± 1.9 g in the vehicle group).
Hyperglycemia (supplemental Figures 1B, 2, 3A, 5A, and 6A) was
maintained until day 14, on which stroke was induced
(supplemental Figure 1B), and for the rest of the experiments. We
then measured lesion volumes, recanalization, reperfusion rates,
and HTs using in vivo magnetic resonance imaging (MRI) and
speckle contrast imaging, at day 1 after stroke (Figure 1A). A grip-
test task was used to evaluate functional outcomes. No mortality
was observed in any group of animals (supplemental Figure 1B).
Hyperglycemic animals (STZ) displayed bigger ischemic lesion
volumes (23.38 ± 7.3 mm3 in the control [Ctrl] group vs 36.00 ±
10.8 mm3 in the STZ group, n = 12-13, P = .0017; Figure 1B-C).
Early intravenous administration of rtPA (10 mg/kg, 20 minutes
after MCAo) diminished the lesion size by 44.9% in the non-
hyperglycemic animals, whereas it had no effect in the hypergly-
cemic animals (23.38 ± 7.3 mm3 in Ctrl vs 12.88 ± 5.9 mm3 in
Ctrl-rtPA, P < .01; and 36 ± 10.8 mm3 in STZ group vs 39.58 ±
7.6 mm3 in STZ-rtPA, P = .7, n = 13). Hyperglycemic animals
displayed a similar rtPA-mediated reperfusion of the injured tissues
at 40 minutes after treatment than that in nonhyperglycemic ani-
mals (+15.91% ± 4.8% in Ctrl-rtPA vs +14.06% ± 6.2% in STZ-
rtPA, n = 12-13, P = .87; supplemental Figure 1C). However, 24
hours after MCAo (Figure 1D; supplemental Figure 1A) angio-
graphic scores revealed that nonhyperglycemic and hyperglycemic
animals responded to rtPA treatment in terms of recanalization
(38% of complete recanalization in Ctrl groups vs 83% of com-
plete recanalization in Ctrl-rtPA group, and 17% of complete
recanalization in STZ groups vs 58% in STZ-rtPA groups; n = 12-
13). In parallel, hyperglycemic animals treated with rtPA displayed a
high level of HTs assessed by using T2*-weighted MRI (Figure 1E;
supplemental Figure 1A). This phenomenon was not observed in
nonhyperglycemic animals (38% with signs of HT, petechial, and
parenchymal hemorrhage, in Ctrl-rtPA, n = 13 vs 67% with signs of
HT in STZ-rtPA group, n = 12). A parallel behavior task, the grip
test, was performed on days 1, 3, and 7 after stroke onset
(Figure 1F-G). Furthermore, mice in all groups displayed sensori-
motor deficit at day 1 (day 1 vs day 0, $ P < .05 in all groups). The
strength ratio of left/right paws was significantly improved in the
Ctrl-rtPA group (0.92 ± 0.07, n = 12) compared with that of the
STZ-rtPA group (0.81 ± 0.09, n = 12). Animals treated with rtPA
showed less deficit because of the stroke if they did not present
comorbidity. At day 3, the strength ratio of left/right paws remained
significantly different from that at baseline in the STZ group,
whereas the Ctrl group demonstrated a more pronounced recovery
(Figure 1F). Concerning the strength of both paws compared with
that at baseline, tPA allowed a better outcome in nonhyperglycemic
mice on days 1 and 7 but not in hyperglycemic mice. For this
parameter, we also observed a better improvement in non-
hyperglycemic mice than in hyperglycemic mice (on day 1:
88.1% ± 5.0% in Ctrl-rtPA, n = 12 vs 77.5% ± 9.0% in STZ-rtPA
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group, n = 12; on ay 3: 91.1% ± 5.3% in Ctrl-rtPA vs 84.4% ±
10.2% in STZ-rtPA group; on D7: 95.4% ± 4.4% in Ctrl-rtPA vs
88.8% ± 11.8% in STZ-rtPA group; Figure 1G).

It is well-known in clinical practice that rtPA-induced thrombolysis
is beneficial within a limited therapeutic window (4.5 hours alone,
and 6-12 hours when combined with thrombectomy).45 We tested
rtPA at 2 times after stroke, within the therapeutic window (ie,
20 minutes) and outside of this window (ie, 4 hours),4,5,41 to
evaluate whether the rate of HTs was also increased with time to
treatment in hyperglycemic mice. Our data (Figure 2) confirmed
previous results (Figure 1), showing that both early and late rtPA
treatments (Figure 2A) led to higher levels of HTs in hyperglycemic
animals, without providing brain protection, despite similar recan-
alization rates compared with those of the STZ group (80% of
parenchymal and petechial hemorrhages for early and late rtPA-
treated animals, n = 5 compared with 20% in nontreated ani-
mals, n = 10; Figure 2B-E). These data demonstrate that chronic
hyperglycemia induces a partial resistance to the rtPA treatment
and increases the risk of HT, without exacerbating these risks when
thrombolysis is delayed.

NAC induces recanalization after acute thrombosis in

hyperglycemic animals without the risk of HTs

In a previous work, we demonstrated that intravenous NAC
administration, by targeting von Willebrand factor (VWF), promotes
lysis of arterial thrombi resistant to rtPA.41 Thus, we investigated
whether NAC could improve ischemic lesion size, recanalization
and tissue reperfusion, risk of HTs, and neurological outcomes in
hyperglycemic mice after stroke. We injected 400 mg/kg of NAC
20 minutes after occlusive thrombus formation in STZ-pretreated
mice (Figure 3A). As expected, both rtPA and NAC, either alone
or combined, increased the angiographic score measured by 7T
MRI (STZ: 14% of complete recanalization; STZ-rtPA: 77%; STZ-
NAC: 64%; STZ-NAC-rtPA: 79%; Figure 3D).

More interestingly, NAC significantly reduced ischemic lesion sizes
in hyperglycemic mice (−33% in STZ-NAC group vs STZ group,
P < .05, n = 14; Figure 3B-C), whereas rtPA alone showed no
significant effect, consistent with prior reports (40.20 ± 9.5 mm3 in
STZ groups vs 40.43 ± 9.0 mm3 in STZ-rtPA group, P > .99,
n = 14). Moreover, rtPA did not reduce nor enhance NAC bene-
ficial effects when coadministered (26.92 ± 14.3 mm3 in STZ-NAC
group vs 21.59 ± 10.7 mm3 in STZ-NAC-rtPA group, P = .58,
n = 14). The NAC-induced beneficial effect alone did not result in
an increase in HTs, with 43% and 36% of petechial and paren-
chymal hemorrhage in the STZ and STZ-NAC groups, respectively
(n = 14). This is in contrast to the effects observed with rtPA, either
alone or combined with NAC, with which HTs were 64% in the
STZ-rtPA group and 89% in the STZ-NAC-rtPA group (n = 14;
Figure 3E). Accordingly, NAC treatment led to better functional
outcomes when compared with rtPA alone. The functional recovery
test at day 1 showed that the STZ-NAC group was significantly
less affected by stroke than the untreated group in terms of the left/
right ratio (0.84 ± 0.06 in STZ group vs 0.91 ± 0.05 in STZ-NAC
group, n = 14, P < .01; Figure 3F). On day 3, the functional
recuperation was better in groups treated with NAC concerning
the left/right ratio, and both paws (0.87 ± 0.09 in STZ group
vs 0.94 ± 0.05 in STZ-NAC and STZ-NAC-rtPA groups, n = 14,
P < .05; Figure 4F; 84.3% ± 6.3% in STZ group vs 94.2% ± 9.4%
12 MARCH 2024 • VOLUME 8, NUMBER 5
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in STZ-NAC group and 93.5% ± 6.0% in STZ-NAC-rtPA group,
n = 14, P < .05; Figure 3G). On day 7, only animals treated with the
combination of NAC and rtPA presented a better recovery than on
day 1 for both parameters (Figure 3F-G). These data suggest that
targeting VWF with NAC could be a relevant thrombolytic strategy
for patients who have had a stroke, especially in the presence of a
comorbidity such as chronic hyperglycemia in order to reduce the
risk of HTs.

Targeting endothelial tPA-dependent NMDAR

signaling increases the benefit of rtPA- or NAC-

mediated thrombolysis

Some of the deleterious effects of exogenous rtPA and endoge-
nous tPA after stroke are mediated by their ability to promote the
activity of neuronal and/or endothelial NMDAR.12,15,16 To prevent
these side effects of rtPA/tPA, we generated a monoclonal anti-
body, named Glunomab, which blocks the interaction of tPA with
the amino-terminal domain of the GluN1 subunit of NMDAR and
subsequent signaling.12 We investigated whether Glunomab alone
or combined with rtPA may counteract the deleterious effects of
tPA after ischemic stroke, first in nonhyperglycemic animals
(Figure 4A). As expected, early intravenous administration of rtPA
reduced the lesion size by 41% compared with that in nontreated
animals (n = 12, P < .05; Figure 4B). Glunomab administered
alone led to brain protection (−49%, n = 12, P < .01), which was
also observed in conjunction with rtPA (−49%, n = 12, P < .01).
rtPA treatment promoted superficial tissue reperfusion (−4% ±
36.0% of reperfusion in the Ctrl group compared with +57.3% ±
82.5% in the rtPA group, n = 12, P < .05 compared with the Ctrl
group; supplemental Figure 4; Figure C) and recanalization at 24
hours (83% of partial and complete recanalization, n = 12;
Figure 4C), either administered alone or combined with Glunomab
(−4% ± 36.0% of reperfusion in Ctrl group compared
with +48% ± 54.9% in Gluno-rtPA group, n = 12; supplemental
Figure 4) and 92% of partial and complete recanalization at 24
hours, n = 12 for (Figure 4C). Glunomab alone improved recana-
lization at 24 hours (91% of partial and complete recanalization at
24 hours, n = 12; Figure 4C). Moreover, the beneficial effects
induced by Glunomab were not associated with an increase in
HTs, with 25% of petechial and parenchymal hemorrhage
Figure 1. Chronic hyperglycemia induces rtPA resistance and increases HT in a

experimental protocol. (B) Quantification of ischemic lesion volume, 24 hours after MCAo as

10% bolus, 90% perfusion during 40 minutes) on nonhyperglycemic mice (Ctrl) or on hype

are plotted; 23.38 mm3 for Ctrl group (n = 13); 12.88 mm3 for Ctrl-rtPA group (n = 13); 36

analysis of variance (ANOVA) (P < .01); Tukey test for multiple comparisons (**P < .01; *

representation of the lesion distribution around bregma (right), 24 hours after MCAo in Ctrl, C

after MCAo assessed by FLASH TOF 2D imaging (7T MRI) in Ctrl (n = 13), Ctrl-rtPA (n

occlusion (orange); partial recanalization = incomplete filling of the distal bed (light green);

Wallis test (P < .01); Dunns test for multiple comparisons (**P < .01). (E) Proportion of H

(deoxyhemoglobin; 7T MRI) in Ctrl (n = 13), Ctrl-rtPA (n = 13), STZ (n = 12), and STZ-rtPA (

specific left paw–strength deficit measured by grip-test ratio (strength of left/right paws) of C

7 after MCAo. Data were assessed in grams. Results are represented in mean ± SEM; 2-wa

between groups at each time; $P < .5 vs baseline for each group: impact of Stroke; #P <

measured by grip-test of forepaws of Ctrl, Ctrl-rtPA, STZ, and STZ-rtPA groups (n = 12) be

in percentage normalized for each animal with the corresponding baseline value (before M

and group factor <0.001; Tukey test for multiple comparison (*P < .05 between groups at

each group: recovery).
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observed for Glunomab alone, compared with 33% of total hem-
orrhages in the Ctrl group (Figure 4D).

In hyperglycemic animals (Figure 5A), the intravenous administra-
tion of rtPA failed to reduce the lesion size (−4% compared with
STZ group, n = 15-16, P = .99; Figure 5B-C). However, coad-
ministration of Glunomab and rtPA led to a significant reduction of
lesion volumes (−46% in STZ-Gluno-rtPA group compared with
STZ group, n = 15-16, P < .01, and −43% compared with rtPA
alone, n = 15-16, P < .01; Figure 5B-C). Glunomab alone also
demonstrated brain protection (−31%, n = 15-16, P < .05 when
compared with only the STZ group; Figure 5B-C). The rtPA-
mediated reperfusion/recanalization (+10% ± 14.1% for real-time
tissue reperfusion compared with −1.1% ± 4.1% for STZ group,
n = 15-16, P < .05; supplemental Figure 5B; and 57% of complete
recanalization at 24 hours in the STZ-rtPA group, n = 15-16;
Figure 5D) was associated with a higher rate of HTs (80% of
animals with petechial and parenchymal hemorrhage in the STZ-
rtPA group, n = 15; Figure 5E). The concurrent administration of
Glunomab and rtPA demonstrated improved outcomes, with 67%
achieving complete recanalization at 24 hours (n = 16; Figure 5E),
a 9.2% increase in real-time tissue reperfusion compared with that
in the STZ group (n = 16, P < .05; supplemental Figure 5B), and a
31% occurrence of petechial and parenchymal hemorrhage (n =
16; Figure 5E) compared with 31% in the STZ group. These
improvements correlated with enhanced functional outcomes
(Figure 5F-G). At day 7, Glunomab alone or its combination with
either rtPA or NAC exhibited superior recovery compared with the
STZ and STZ-rtPA groups, as indicated by the left/right paw
strength ratio when compared with that on day 1 (at day 7: STZ,
0.93 ± 0.03; STZ-rtPA, 0.91 ± 0.05; STZ-Gluno, 0.96 ± 0.06;
STZ-Gluno-rtPA, 0.96 ± 0.07; n = 15-16; P < .05; Figure 5F).
Additionally, regarding the strength of both paws at day 7, the
STZ-Gluno-rtPA group showed greater improvement than
the STZ and STZ-rtPA groups (at day7: 97.1% ± 3.9% from the
baseline in the STZ-Gluno-rtPA group, compared with 88.2% ±
5.2% from the baseline in the STZ group and 88.4% ± 6.1% in
the STZ-rtPA group; n = 15-16; P < .05; Figure 5G). These
findings suggest that the side effects of recombinant and
endogenous tPA involve, at least in part, tPA-dependent endo-
thelial NMDARs signaling.
mouse model of thromboembolic stroke. (A) Schematic representation of the

sessed by T2-weighted imaging (7T MRI) in saline or rtPA treated (10 mg/kg; Actilyse,

rglycemic mice (STZ). Individual values, means, and standard error of the mean (SEM)

mm3 for STZ group (n = 12); 39.58 mm3 for STZ-rtPA group (n = 12). Ordinary 1-way

***P < .0001). (C) Representative T2-weighted 7T MRI brain images (left) and

trl-rtPA, STZ, and STZ-rtPA groups. (D) Percentage of angiographic scores 24 hours

= 12), STZ (n = 12), and STZ-rtPA (n = 12) groups. No recanalization = complete

and complete recanalization = complete filling of the distal bed (dark green). Kruskal-

T per groups, 24 hours after MCAo assessed by T2*-weighted imaging

n = 12) groups. Fisher exact tests between groups (*P < .05). (F) Quantification of the

trl, Ctrl-rtPA, STZ, and STZ-rtPA groups (n = 12) before MCAo and on days 1, 3, and

y ANOVA: time × group effect = 0.0211; Tukey test for multiple comparison (*P < .05

.5 vs day 1 for each group: recovery). (G) Quantification of the global strength deficit

fore and on days 1, 3, and 7 after MCAo. Data were assessed in grams and converted

CAo). Results are represented in mean ± SEM; 2-way ANOVA: time factor <0.0001,

each time; $P < .5 vs baseline for each group: impact of stroke; #P < .5 vs day 1 for
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Figure 2. Chronic hyperglycemia induces rtPA resistance and increases HT independently of the therapeutic window. (A) Schematic representation of the experimental

protocol. (B) Quantification of ischemic lesion volume, 24 hours after MCAo assessed by T2-weighted imaging (7T MRI) in hyperglycemic mice treated with saline (STZ group) or

rtPA (10 mg/kg; Actilyse, 10% bolus, 90% perfusion during 40 minutes), in early 20 minutes after MCAo (STZ-rtPA-early) or in late 4 hours after MCAo (STZ-rtPA-late). Individual

values, means, and SEM are plotted; 34.45 mm3 for STZ group (n = 10); 37.01 mm3 for STZ-rtPA-early group (n = 5); and 33.98 mm3 for STZ-rtPA-late group (n = 5). Ordinary

1-way ANOVA (P = .14). (C) Representative T2-weighted 7T MRI brain images (left) and representation of the lesion distribution around bregma (right) 24 hours after MCAo in STZ,

STZ-rtPA-early and STZ-rtPA-late groups. (D) Percentage of angiographic scores, 24 hours after MCAo assessed by FLASH_TOF_2D imaging (7T MRI) in STZ (n = 10), STZ-rtPA-

early (n = 5), and STZ-rtPA-late (n = 5) groups. No recanalization = complete occlusion (orange); partial recanalization = incomplete filling of the distal bed (light green); and complete

recanalization = complete filling of the distal bed (dark green). Kruskal-Wallis test (P = .16). (E) Proportion of HT per group, 24 hours after MCAo assessed by T2*-weighted imaging

(deoxyhemoglobin; 7T MRI) in STZ (n = 10), STZ-rtPA-early (n = 5), and STZ-rtPA-late (n = 5) groups. Fisher exact tests between groups (P > .05).
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Figure 3. N-Acetyl-Cysteine induces recanalization after acute thrombosis in chronically hyperglycemic animals without risk of HT. (A) Schematic representation

of the experimental protocol. (B) Quantification of ischemic lesion volume 24 hours after MCAo assessed by T2-weighted imaging (7T MRI) in hyperglycemic mice treated after

stroke with saline (STZ) or rtPA (10mg/kg; Actilyse, 10% bolus, 90% perfusion during 40 minutes; STZ-rtPA group), NAC (400 mg/kg, slow bolus during 60 seconds; STZ-NAC

group) or a combination of NAC and rtPA (STZ-NAC-rtPA group). 40.20 mm3 for STZ group (n = 14); 40.43 mm3 for STZ-rtPA group (n = 14); 26.92 mm3 for STZ-NAC group

(n = 14); 21.59 mm3 for STZ-NAC-rtPA group (n = 14). Ordinary one-way ANOVA (P < .001); Tukey test for multiple comparisons (*P < .05; ***P < .001). (C) Representative T2-

weighted 7T MRI brain images (left) and representation of the lesion distribution around bregma (right) 24 hours after MCAo in STZ, STZ-rtPA, STZ-NAC and STZ-NAC-rtPA

groups. (D) Percentage of angiographic scores 24 hours after MCAo assessed by FLASH_TOF_2D imaging (7T MRI) in STZ, STZ-rtPA, STZ-NAC and STZ-NAC-rtPA groups

(n = 13-14 per group). No recanalization = complete occlusion (orange); partial recanalization = incomplete filling of the distal bed (light green); complete recanalization =

complete filling of the distal bed (dark green). Kruskal-Wallis test (P < .01); Dunn’s test for multiple comparisons (*P < .05, **P < .01). (E) Proportion of HT per groups 24 hours

after MCAo assessed by T2*-weighted imaging (deoxyhemoglobin; 7T MRI) in STZ, STZ-rtPA, STZ-NAC and STZ-NAC-rtPA groups (n = 14 per group). Fisher exact tests

between groups (*P < .05). (F) Quantification of the specific left paw strength deficit measured by grip-test ratio (strength of left/right paws) on day before and on day 1, day 3,

and day 7 after MCAo in STZ, STZ-rtPA, STZ-NAC and STZ-NAC-rtPA groups (n = 14 per group). Data were assessed in grams. Results are represented in mean ± SEM. 2-way

ANOVA: Time factor <0.0001 and group factor <0.001; Tukey test for multiple comparison (*P < .05 between groups at each time; $P < .5 vs baseline for each group: impact of

Stroke; #P < .5 vs day 1 for each group: recovery). (G) Quantification of the global strength deficit measured by grip-test of forepaws before and on days 1, 3, and 7 after MCAo in

STZ, STZ-rtPA, STZ-NAC and STZ-NAC-rtPA groups (n = 14 per group). Data were assessed in grams and converted in percentage normalized for each animal with the

corresponding baseline value (before MCAo). Results are represented in mean ± SEM. 2-way ANOVA: Time factor <0.0001 and group factor <0.001; Tukey test for multiple

comparison (*P < .05 between groups at each time; $P < .5 vs baseline for each group: impact of Stroke; #P < .5 vs day 1 for each group: recovery).

Doppler
Speckle

monitoring

MRI-7T

40’20’

D0 D1

Thrombin stroke
induction

Vehicle-Gluno

A

rtP
A

Glun
o

Glun
o-r

tP
A

Ve
hic

le

Le
sio

n 
vo

lum
e 

(m
m

3 )

40

30

20

10

0

*

**

**B

100

80

60

40

20

0

%
 o

f a
nim

als

25%

67%

8%

50%

33%

17%

33%

9%

58% 67%

25%

8%

No Rec

Partial Rec

Complete Rec

Control rtPA Gluno Gluno-rtPA

C
100

80

60

40

20

0

%
 o

f a
nim

als

33% 33% 33%

67% 67% 67%

25%

No hemorrhage

Hemorrhage

Control rtPA Gluno Gluno-rtPA

75%

D

Figure 4. Targeting endothelial tPA-dependent NMDAR signaling with Glunomab increases the benefit of rtPA-mediated thrombolysis in nonhyperglycemic

mice. (A) Schematic representation of the experimental protocol. (B) Quantification of ischemic lesion volume, 24 hours after MCAo assessed by T2-weighted imaging (7T MRI)
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We also tested Glunomab in combination with NAC in our model
of thromboembolic stroke in hyperglycemic animals (Figure 5A).
Early intravenous administration of NAC and Glunomab diminished
the lesion size by 48% compared with nontreated STZ animals (n =
15-16; P < .005; Figure 5B-C) or rtPA-treated STZ animals
(−46.2%; n = 15-16; P < .01; Figure 5B-C). Accordingly, NAC
combined with Glunomab promoted 24-hour recanalization (79%
of complete recanalization, n = 16; Figure 5D). These positive
effects were accompanied by the absence of increased HTs (40%
of petechial and parenchymal hemorrhage; Figure 5E), consistent
with the observed enhancements in functional outcomes
(Figure 5F-G). Concerning strength ratios at days 1, 3, and 7, the
combination of NAC with Glunomab significantly provided better
outcomes than in the STZ and STZ-rtPA groups (at day 1: STZ-
NAC-Gluno, 0.92 ± 0.03; STZ, 0.87 ± 0.04; STZ-rtPA, 0.85 ±
0.06; P < .05; on day 3: STZ-NAC-Gluno, 0.95 ± 0.03; STZ,
0.89 ± 0.04; STZ-rtPA, 0.89 ± 0.04; P < .05; on day 7: STZ-NAC-
Gluno, 0.98 ± 0.03; STZ, 0.93 ± 0.03; STZ-rtPA, 0.91 ± 0.05; n =
15-16; P < .05; Figure 5F). Moreover, concerning both paw
strengths at day 7, we observed better midterm recuperation in the
STZ-NAC-Gluno group than in the STZ and STZ-rtPA groups (at
day 7: STZ-NAC-Gluno, 96.3% ± 5.5%; STZ, 88.2% ± 5.2%;
STZ-rtPA, 88.4% ± 6.1%; n = 15-16 P < .05; Figure 5G).

Targeting endothelial tPA-dependent NMDAR

signaling reduces infiltration of circulating

inflammatory cells in the ischemic brain

Previous data have highlighted that Glunomab, by inhibiting the
tPA-dependent interaction with endothelial NMDAR, effectively
reduce immune cell migration across the BBB in both in vitro and
in vivo settings.12,15 We, thus, hypothesized that Glunomab might
extend its therapeutic effects in stroke by reducing immune cell
infiltration.46 To investigate this, flow cytometry analyses were
performed on brain tissues retrieved from nonhyperglycemic and
hyperglycemic mice subjected to thromboembolic stroke, treated
either with or without rtPA and Glunomab, at 5 days after stroke
onset (n = 5-6; Figure 6A; supplemental Figure 6B). Notably, the
Figure 5. Glunomab coupled with a thrombolytic agent improves stroke outcome

representation of the experimental protocol. (B) Quantification of ischemic lesion volume, 2

saline (STZ group), rtPA (10mg/kg; Actilyse, 10% bolus, 90% perfusion over 40 minutes;

combination of Glunomab and rtPA (STZ-Gluno-rtPA group), and a combination of Glunoma

and SEM are plotted; 28.80 mm3 for STZ group (n = 16); 27.66 mm3 for STZ-rtPA group

group (n = 16); and 14.88 mm3 for STZ-NAC-Gluno group (n = 15). Ordinary 1-way ANO

Representative T2-weighted 7T MRI brain images (left) and representation of the lesion dis

STZ-Gluno-rtPA, and STZ-NAC-Gluno groups. (D) Percentage of angiographic scores, 24

STZ-rtPA (n = 14), STZ-Gluno (n = 15), STZ-Gluno-rtPA (n = 15), and STZ-Gluno-NAC (n =

incomplete filling of the distal bed (light green); and complete recanalization = complete filli

comparisons (*P < .01 and **P < .01). (E) Proportion of HT per groups, 24 hours after MC

STZ-rtPA (n = 15), STZ-Gluno (n = 15), STZ-Gluno-rtPA (n = 16), and STZ-Gluno-NAC (n

specific left paw–strength deficit measured by grip-test ratio (strength of left/right paws) of

STZ-Gluno-NAC (n = 15) groups, 1 day before, and on day 1, day 3, and day 7 after MC

ANOVA: time effect <0.0001 and group effect <0.01; Tukey test for multiple comparison (

Stroke; #P < .5 vs day 1 for each group: recovery). (G) Quantification of the global strengt

Gluno (n = 15), STZ-Gluno-rtPA (n = 16), and STZ-Gluno-NAC (n = 15) groups 1 day be

converted in percentage normalized for each animal with the corresponding baseline value

<0.0001; Tukey test for multiple comparison (*P < .05 between groups at each time; $P

recovery).
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animals included in this analysis at 5 days after stroke displayed
similar outcomes to those of which data are presented in the
preceding figures measured at 24 hours after stroke, concerning
lesion volumes, angiographic scores, HT, and real-time tissue
reperfusion (n = 5-6; supplemental Figure 6A). We analyzed
CD11b+/CD45low microglial cells, CD11b+/CD45high activated
microglial cells or infiltrated macrophages, CD11+/CD45+/Ly6G+

neutrophils, CD3+ T cells, CD8+ T cells, and CD4+ T cells
(Figure 6B-D; supplemental Figure 6B). As expected, ischemia led
to increased inflammatory status in the ipsilateral hemisphere
compared with the contralateral hemisphere for almost all analyzed
cell types in untreated groups. Five days after stroke, levels of
neutrophils and CD8+ T cells were increased in the ipsilateral
hemisphere of hyperglycemic mice, with or without rtPA treatment
(n = 5-6; supplemental Figure 6B). Hyperglycemia also increased
the infiltration of neutrophils and CD8+ T cells in the ipsilateral
hemisphere (+125% of neutrophil cells for STZ-rtPA–treated ani-
mals compared with Ctrl animals, P < .05, and +76% of CD8+ T
cells for STZ-rtPA–untreated animals compared with control, P <
0,1, n = 5-6; Figure 6C-E). The administration of Glunomab
significantly reduced the infiltration of both cells type, especially
when combined with rtPA. Specifically, we observed a reduction of
invading neutrophils of 126% in STZ animals treated with the
combination of Glunomab and rtPA compared with those treated
with rtPA (P < .05; Figure 6C). Additionally, there was a beneficial
effect of Glunomab in STZ animals regarding CD3+CD8+ T-cell
population, with a 74% reduction in invading cytotoxic T cells in
STZ-rtPA-Gluno mice compared with STZ mice. These findings
indicate that the beneficial effects of Glunomab on different stroke
outcomes are associated with reduced invasion of brain tissue by
circulating inflammatory cells.

In a thromboembolic experimental stroke model responsive to rtPA
treatment, our data reveal that hyperglycemia not only impairs the
efficacy of the gold-standard treatment but also amplifies the risk of
rtPA-associated HTs and exacerbates inflammatory responses.
These side effects appear to be mediated through the tPA-
dependent endothelial NMDAR signaling.
and protects against HT in chronically hyperglycemic animals. (A) Schematic

4 hours after MCAo assessed by T2-weighted imaging (7T MRI) in mice treated with

and STZ-rtPA group), Glunomab (300 μg, 100% bolus; STZ-Gluno group), a

b and NAC (400 mg/kg, slow bolus) on hyperglycemic mice. Individual values, means,

(n = 15); 20.14 mm3 for STZ-Gluno group (n = 15); 15.64 mm3 for STZ-Gluno-rtPA

VA (P < .001); Tukey multiple comparisons (**P < .01 and ***P < .001). (C)

tribution around bregma (right), 24 hours after MCAo in STZ, STZ-rtPA, STZ-Gluno,

hours after MCAo assessed by FLASH_TOF_2D imaging (7T MRI) in STZ (n = 15),

14) groups. No recanalization = complete occlusion (orange); partial recanalization =

ng of the distal bed (dark green). Kruskal-Wallis test (P < .05); Dunns test for multiple

Ao assessed by T2*-weighted imaging (deoxyhemoglobin; 7T MRI) in STZ (n = 16),

= 15) groups. Fisher exact tests between groups (*P < .05). (F) Quantification of the

STZ (n = 16), STZ-rtPA (n = 15), STZ-Gluno (n = 15), STZ-Gluno-rtPA (n = 16), and

Ao. Data were assessed in grams. Results are represented in mean ± SEM; 2-way

*P < .05 between groups at each time; $P < .5 vs baseline for each group: impact of

h deficit measured by grip-test of forepaws of STZ (n = 16), STZ-rtPA (n = 15), STZ-

fore and on day 1, day 3, and day 7 after MCAo. Data were assessed in grams and

(before MCAo). Results are represented in mean ± SEM; 2-way ANOVA: time factor

< .5 vs baseline for each group: impact of Stroke; #P < .5 vs day 1 for each group:
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Discussion

Hyperglycemia is a prevalent comorbidity among stroke patients,
affecting up to 50% of individuals.47,48 It is characterized by
elevated serum glucose levels and correlates with larger lesion
volumes and more severe deficits. Furthermore, hyperglycemia
increases the risk of recurrent ischemic stroke, especially after a
transient ischemic attack or minor stroke.49

In this study, we evaluated the efficacy and safety of 2 thrombolytic
agents: the well-established rtPA (Alteplase/Actilyse) and NAC.
Prior research has highlighted the beneficial effects of NAC after
stroke by dissolving rtPA-resistant clots.50-54 This effect is achieved
through NAC’s targeting of VWF present in platelet-rich clots.41

Administration of all drugs occurred 20 minutes after the onset of
stroke, consistent with the previously estimated therapeutic window
of 90 minutes for the preclinical model used in our study.4,41

When conducted in animals without comorbidities, the thrombo-
embolic stroke model induced by thrombin results in the formation
of a fibrin-rich clot that remains responsive to rtPA treatment.4

Notably, there is no clear evidence of significant HTs or modera-
tion when tPA is administered at a later stage.4,5,55,56 Our meta-
analysis, encompassing various studies, supports the idea that, in
this model, the administration of tPA does not substantially elevate
the risk of HTs when comorbidities are absent. Consequently, this
model enabled us to observe improved outcomes with interven-
tions like NAC-targeting VWF 41,53,57 or a novel fibrinolytic agent
called Microlyse, created through the combination of an antibody
targeting fibrin and urokinase.58

In this preclinical investigation, chronic hyperglycemia has been
observed to transform clots initially responsive to rtPA into partially
rtPA-resistant clots. This transformation exacerbates the outcomes
of stroke by increasing the occurrence of HTs and promoting
inflammatory processes. Similar experiments have been carried out
in our laboratory using female mice, revealing that chronic hyper-
glycemia results in larger lesions and more frequent HTs, with no
discernible beneficial effects of tPA observed (data not shown).

This study demonstrates that NAC effectively dissolve clots that
are partially resistant to rtPA, without increasing HTs, even in the
presence of hyperglycemia. These findings gain further clinical
significance from previous reports indicating NAC’s positive out-
comes in patients treated with streptokinase and nitroglycerine
with acute myocardial infarction. These patients experienced
improved outcomes linked to a faster coronary reperfusion rate in
NAC-treated individuals (−39%).59,60

There are several sources of tPA: the endogenous tPA produced
by endothelial cells,61 hepatocytes,62 and neurons,63 as well as the
exogenous tPA administered intravenously after stroke. Both forms
of tPA exert influence on NMDAR signaling in neurons and endo-
thelial cells.64 tPA is known to influence neuronal death in patho-
logical conditions and to modulate inflammatory processes and the
integrity of the BBB, thus favoring HTs. These effects largely stem
from tPA’s ability to modulate neuronal and endothelial NMDAR
signaling.12,16

Then, our hypothesis was that blocking the NMDAR/tPA interac-
tion would enhance outcomes after stroke. To interrupt tPA-
dependent endothelial NMDAR signaling, we used Glunomab, a
monoclonal antibody that competes with both endogenous and
12 MARCH 2024 • VOLUME 8, NUMBER 5
exogenous tPA (administered via intravenous injection) for binding
to the GluN1 subunit of NMDAR. In this context, Glunomab shows
promise in alleviating tPA’s side effects, including the risk of HT.
Importantly, whether used alone (targeting endogenous tPA) or in
combination with exogenous rtPA or NAC, Glunomab reduces
ischemic lesion volumes and the infiltration of inflammatory cells
into the injured brain tissue. These actions contribute to an
enhanced functional recovery. As previously reported, NAC
appears to demonstrate a more efficient and safer profile than rtPA
as a thrombolytic agent after a stroke, a characteristic that is further
strengthened in the presence of Glunomab.41

The brain hosts various resident immune cell subsets that
contribute to inflammation upon activation after ischemic
stroke.46,65,66 Additionally, circulating macrophages, neutrophils,
and T cells can cross the injured BBB 67-69 and reach the brain
parenchyma.46,70,71 Based on a previous study,72 our investigation
assessed the presence of these different cell types on different
treatment conditions, 5 days after stroke onset. As expected,
stroke exacerbates the inflammatory status of the injured brain
parenchyma, a phenomenon worsened by chronic hyperglycemia
and exposure to rtPA. As demonstrated previously in a preclinical
model of multiple sclerosis,73 Glunomab reduces the infiltration of
CD8+ T cells and neutrophils.

These findings align with the established concept that modulating
the dysregulated immune response can effectively promote post-
stroke brain recovery. Importantly, Glunomab does not directly
target inflammatory cells but rather limits their passage through the
endothelium of the BBB. This action is likely to reduce the risk of
secondary detrimental effects.46

tPA is also considered as a cytokine-like molecule and a neuro-
modulator, 63,74 and these additional functions are partly attributed to
its ability to modulate NMDAR signaling in neurons and endothelial
cells.12,15,16,73 Our present work sheds light on the direct contribu-
tion of tPA-dependent NMDAR signaling to both the infiltration of
inflammatory cells across the BBB and the occurrence of HTs.

This study has several limitations. Firstly, human thrombi might
exhibit distinct structures and greater variability compared with
those replicated in our preclinical models. However, we consider
our thromboembolic model as closely mimicking clinical scenarios.
Secondly, despite its relevance, the STZ-induced model of chronic
hyperglycemia does not fully replicate the clinical situation of dia-
betes.43,75,76 In humans, hyperglycemia is defined as a blood
glucose level of ≥180 mg/dL, whereas our preclinical model rep-
resents a situation of severe hyperglycemia (≥300 mg/dL).49

Additional preclinical data and clinical trials are required to estab-
lish the efficacy of targeting tPA-dependent endothelial NMDAR in
patients who have experienced a stroke. It is important to note that
both endogenous and exogenous tPA interact with endothelial
NMDAR, suggesting that this strategy may be relevant not only for
patients treated with rtPA but also for those receiving its deriva-
tives, such as tenecteplase, which also interacts with NMDAR.77
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