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A sweet deal: blocking NMDAR for safer t-PA in diabetes
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In this issue of Blood Advances, Lebrun et al1 elegantly provide preclinical proof of concept for improving
thrombolysis in patients who have had a diabetic stroke. Combining tissue-type plasminogen activator
(t-PA) with an antibody blocking the N-methyl-D-aspartate receptor (NMDAR) enhanced thrombolysis
while reducing cerebral bleeding in diabetic mice. This seemingly counterintuitive finding builds on an
extensive body of work by this group and others on the role of extravascular t-PA in the brain.2

Diabetes and stroke form a detrimental combination. Individuals with diabetes are at an increased risk of
stroke, often experience more severe stroke-related complications, and typically respond less to treatment
with t-PA.3,4 Although diabetes is not an outright contraindication for t-PA, it does correlate with a
heightened risk of hemorrhagic transformations.4 Notably, these adverse effects are primarily attributed to
hyperglycemia, which is found in ~40% of all patients who have had a stroke. Efforts to enhance stroke
outcomes have led to numerous trials focusing on the acute management of glucose levels in patients
who have had a stroke. However, to date, these trials have not yielded positive results.5 This lack of benefit
is likely due to the prolonged impact of hyperglycemia on the brain and the hemostatic system, creating
changes that are not reversible through an acute reduction of blood glucose levels.

To improve safety and efficacy of t-PA in the setting of diabetes, the authors focused on targeting
NMDAR in a clinically relevant ischemic stroke model. Ischemic stroke was induced by thrombin
microinjection directly into the brain vasculature. This results in the formation of a fibrin-rich clot that
successfully occludes local blood flow, resulting in brain damage and neurological deficit. In young and
healthy mice, these thrombi are susceptible to t-PA–induced thrombolysis in a time-dependent manner.
Similarly, as with patients who have had an ischemic stroke, early t-PA administration results in safe and
effective recanalization, whereas delayed treatment reduces efficacy and increases the risk of hemor-
rhagic transformation.6 In this study, the authors add a comorbidity to the equation and use a model of
streptozotocin-induced type 1 diabetes. This is a straightforward model that results in severe hyper-
glycemia and greatly affects stroke outcomes. Diabetic mice exhibit poorer stroke outcomes, primarily
due to heightened thrombosis, amplified inflammation, and a compromised blood-brain barrier.7

Furthermore, the authors report that under diabetic conditions, t-PA does not improve stroke out-
comes; rather, it leads to hemorrhagic transformations, closely mirroring clinical observations.

t-PA is mainly known for its role in fibrinolysis and its use as a thrombolytic drug; however, it also has an
important role in the brain as a neuromodulator by signaling through NMDAR. In fact, many of t-PA’s
detrimental effects in the brain have been attributed to its activation of NMDAR.2 NMDARs are glutamate
receptors that play a crucial role in the excitatory neurotransmission. In the injured brain, excessive
glutamate is released, stimulating NMDAR and causing an influx of calcium ions into neurons. This
subsequently triggers a cascade of events leading to neuronal death.2 In addition, endothelial NMDAR
is involved in the maintenance of blood-brain barrier integrity and subsequent neuroinflammation. This
makes targeting NMDAR an attractive therapeutic target for hemorrhagic and ischemic stroke.8 Previ-
ously, the authors of this study generated a monoclonal antibody (Glunomab) that specifically blocks the
interaction between t-PA and NMDAR and prevents subsequent NMDAR signaling and neurotoxicity.9

Here, the authors provided strong evidence for Glunomab as an ischemic stroke drug either alone or
in combination with t-PA. The results were most promising under diabetic conditions, in which Glunomab
improved reperfusion and reduced hemorrhaging compared with t-PA alone.

In recent years, targeting NMDARs has been pivotal in rejuvenating neuroprotective strategies for
ischemic stroke. However, the multifaceted roles of NMDARs in the brain complicates the design of
therapeutic strategies blocking NMDARs. The strength of Glunomab lies in the specific inhibition of t-PA–
NMDAR interactions while not affecting t-PA–induced fibrinolysis. This aspect is vital because fibrinolysis
12 MARCH 2024 • VOLUME 8, NUMBER 5

Delta:1_given name


using t-PA or tenecteplase, both of which interact with NMDAR,10

often represents the sole acute therapeutic option for patients
who have had an ischemic stroke. Despite the encouraging results
of this study, several aspects warrant further investigation. The
authors focused on acute stroke outcomes; however, given the role
of NMDAR in learning and memory, it will be important to investigate
the effects of Glunomab on long-term neurological recovery.
Another open question is whether Glunomab’s benefits are specif-
ically due to blocking t-PA–NMDAR interactions in endothelial or
neuronal cells. Because Glunomab was administered shortly after
the onset of stroke in this study, it is challenging to ascertain whether
its effects are primarily in reducing neurotoxicity, thereby mitigating
neuroinflammation and the risk of hemorrhagic transformation, or
whether it potentially has other impacts. Future research should
validate Glunomab’s protective efficacy in delayed treatment sce-
narios, in which more extensive brain damage has already occurred.
This is particularly crucial for clinical application because it is
uncommon for patients who have had a stroke to receive treatment
within the first hour of symptom onset.
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